
6.035 Project 2 Write-Up
Nicolaas Kaashoek, Endrias Kahssay, Tony Wang

1 Design

1.1 Control Flow Graph

We transform the IR outputted by project 2 into a control flow graph that allows us to plot the execution
path of a program. To start with, we turn each field declaration at the top level of a program into a global
variable. We represent these variables as VRegisters (virtual registers), which each have a unique identifier
(UUID), and store this information in a VRegScopStack to keep track of them. After handling the global
variables, we handle the functions in a program.

We begin by pushing a new scope onto the scope stack, turn the parameters into VRegisters and add
them to the scope. From there, we generate the sub-section of the control flow graph corresponding to the
current function. We take the BlockNode that represents the function’s code, and begin by adding another
scope to the stack for that block. From there, we add the field declarations to the scope as VRegisters,
and proceed to the statements. We have two kinds of blocks in the control flow: BasicBlocks are used
for general instructions, while BranchBlocks mark a split in the control flow.

BasicBlocks consist of a set of instructions and an exit point. We have a number of instruction
classes that are closer to assembly instructions than the statements created by project 2. Converting our
program into statements such as this makes it much easier to actually generate the assembly later. The
format of these instructions was heavily inspired by the intermediate instructions created by LLVM (https:
//llvm.org/docs/LangRef.html).

We expand each statement into a sub-section of the control flow and get the start and end point of that
sub-section. We chose this approach as a single statement may expand into many instructions. For example,
the statement a = (b + c) * (d + e) needs to evaluate b + c, and d + e and then multiply these
results together and store them in a VRegister. Once we have the start and end points of the statements,
we are able to join all the statements together by assigning the end of the previous statement to the start
of the next statement. In addition to returning the start and end of the statement, we also return the
VRegister containing the final result of the expressions. This ensures we can use the value later in the
program (as an assignment for instance). This allows us to generate the control flow in a program.

It needs to be noted that the above process does not generate maximal blocks in the control flow, and
maintains a large number of nops as well. We handle this by making a second pass over the control flow to
create a maximal graph.

1.1.1 Handling Branches and Short-circuiting

The way we handle statements also deals with statements that cause branches (if, for, while). When a
comparison expression is encountered in the code, we first look at the left side of the comparison and
evaluate it. We then connect this result to a BranchBlock which takes a different path based on the result
of the left side. We follow the short-circuiting paradigms discussed in lecture, with false in an and and a
true in an or allowing us to skip the right side of the comparison. As with other arithmetic expressions, we
store the final result of the comparison in a VRegsiter.

Once we have the VRegister containing the final result of the comparison, we can hand this to another
branch block which controls the direction a loop takes. For example, in the statement if (a>b){...}, the
final result of a>b is stored in a VRegister, and then a BranchBlock is used to take the corresponding
path based on the blocks the if statement points to. The same logic is applied to for and while loops.

In the case of for loops, we simply attach an extra instruction to the end of the loop body which executes
the loop increment expression. For while loops, nothing extra needs to be done.

1



1.2 Maximizing the Control Flow Graph

Once we have the control flow graph as described in the previous section, we need to make it maximal
to avoid unnecessary jmp instructions in the assembly. To do this, we pass over the graph and collapse
any BasicBlock to BasicBlock transitions. The only exception to this is at the end of a comparison
branch. The last instruction in each comparison moves either true or false into a VRegister. Both of these
BasicBlocks then exit to the same point. We avoid collapsing these blocks and their exit points to more
clearly mark the end of a comparison statement. It also simplifies assembly generation.

1.3 Conversion to Assembly

Once the control flow graph has been maximized, we can pass over it an generate assembly. Each kind of
instruction in a BasicBlock is turned into assembly using a simple templating method. We maintain a
map from VRegisters to locations on the stack which allows us to easily look at where a given variable or
expression result was stored. Using the stack for everything is obviously less than optimal, but works well
for this project. This will be a large focus of our optimizations in the future.

Each block in the control flow graph is also given a label in the assembly that allows the exits of blocks
and branch blocks to be easily converted to jmp instructions to those labels.

Global variables are simply stored at the top of the file using the .comm directive, and imports are
automatically handled by the linker.

Because we primarily use the stack as the location for variables and temps, we use only use r10, r11,
and rax as our intermediate registers. This maintains the callee-caller conventions. Arguments are handled
by placing them first into the six standard argument registers, and then onto the stack. This follows standard
calling conventions as well. Finally, the return value is put into rax as expected by the program. We use
leave and ret to take care of the function epilogue, but manually use set the stack and base pointers in
the prologue to a function. Currently the offset of the stack pointer from the base pointer isn’t as close as
it could be, but again, this project doesn’t focus on optimization.

2 Extras

2.1 Assumptions Made

The only assumption we made was the addressing of the return type of an argument as a runtime check. In
our semantic checker project, we checked the return types of functions and checked for return statements as
well, so we kept this strategy as opposed to failing at runtime. The code returns the expected error code for
these problems as well.

This does impact one of the hidden test cases, causing it to fail as it expects assembly to be generated.
To address this, we generate some dummy assembly on such an exit code that just exits. This is done purely
to pass the test cases and is completely unnecessary otherwise.

2.2 Graphviz

In order to make debugging easier, we chose to export our CFG to the dot language used by GraphViz when
the debug flag is supplied. The dot files are generated in the cfgGraph folder, and can be compiled with the
command dot -Tps FILENAME.dot -o OUTPUT.ps. An example of the output of a cfg is included in
that folder by default.

2.3 Unit Testing

As mentioned the previous project, we have provided our own unit testing scripts as well, implemented with
scalatest to improve the speed of as well as general usability of the testing environment. These scripts as

2



well as our own test cases can be found in the test directory. The testing script also runs the tests provided
by course staff.

3


